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Abstract. The nonlinear interaction of a direct current (DC) flowing in a thin metal film with an
external low-frequency alternating-current (AC) electromagnetic field is studied theoretically. The
nonlinearity is related to the influence of the magnetic field of the DC and the magnetic field of the
wave on the form of the electron trajectories. This magnetodynamic mechanism of nonlinearity is
typical for pure metals at low temperatures. We find that such an interaction causes sharp kinks
in the temporal dependence of the AC electric field of the wave on the surface of a sample. The
phenomenon of amplification of the electromagnetic signal on the metal surface is predicted. We
also calculate the nonlinear surface impedance and show that it decreases drastically with the
increase of the wave amplitude.

1. Introduction

It is already known that metals possess quite peculiar nonlinear electrodynamic properties
(see, e.g., references [1, 2]). Usually, in plasmas or semiconductors, a nonlinear response
to electromagnetic perturbation is achieved owing to considerable departure of the electron
system from equilibrium. In metals, because of the high concentration, electrons are always
in near-equilibrium states. Nevertheless, it is fairly standard to observe a nonlinear regime
there, which is due to the fact that in metals the sources of nonequilibrium and nonlinearity are
different. The former is caused by a weak electric field, while the latter is caused by a strong
magnetic field of an electromagnetic wave. The Lorentz force, determined by the magnetic
wave component or the magnetic field of the transport current, affects the dynamics of charge
carriers. Hence, the conductivity of a metal depends on the configuration of the magnetic
field. Such a magnetodynamic mechanism of nonlinearity is typical for pure metals at low
temperatures, when the mean free path of conducting electrons is rather large.

Magnetodynamic nonlinearity causes a number of nontrivial electrodynamic phenomena.
As an example, one could mention the generation of the current states [3, 4] in a sample
placed in an external DC magnetic field. According to [3,4], in a plate irradiated by an electro-
magnetic wave a closed direct current and, as a consequence, an intrinsic DC magnetic moment
appear. The magnitude of the magnetic moment depends in a hysteretic manner on the external
DC magnetic field. Under current states conditions, a hysteresis-like interaction of radio
waves [5] as well as the appearance of electromagnetic dissipative structures [6] is observed.
This specific mechanism of nonlinearity results in a decrease of the collisionless damping of
helicons [7]. Therefore, spiral waves with large amplitudes can propagate under conditions
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where the linear electromagnetic excitations vanish [8]. Magnetoplasma shock waves [9]
and soliton-like excitations [10] are also predicted for the regime of strong magnetodynamic
nonlinearity.

In the present paper, we study a novel manifestation of magnetodynamic nonlinearity,
namely, the interaction of an external electromagnetic wave and a strong direct transport
current in a thin metal film, which is also displayed in a quite unusual way. The thickness of
the sample d is assumed to be much less than the electron mean free path l:

d � l (1)

and electron scattering on the surface of the film is supposed to be diffuse. It is known [11] that
in the static case (where the external AC signal is absent), the magnetic field of a current can
fundamentally affect the conductivity of a thin metal specimen and, thus, its current–voltage
characteristics (CVC). In this situation the value I of the current is rather small, so the typical
radius of curvature R(I) of the electron trajectories in a magnetic field is much greater than
the film thickness:

d � R(I) R(I) = cpF /eH(I) ∝ I−1. (2)

Here −e and pF are the electron charge and Fermi momentum, respectively. In reference [11],
it was shown that nonlinear behaviour of the CVC is connected with the antisymmetric spatial
distribution of the magnetic field of the direct current over the sample thickness. The magnetic
field equals zero at the middle of the film and takes the values H to −H at the opposite
boundaries, where

H = 2πI/cD. (3)

In this formula, c denotes the speed of light in vacuum and D is the sample width. The
spatially alternating field of the direct current entraps some of the electrons in a potential well.
The trajectories of such particles are flat curves winding around the plane where the magnetic
field changes sign. The proportion of trapped electrons is equal, in order of magnitude, to the
typical angle (d/R)1/2 � 1 at which they cross this plane. Taking into account that the trapped
carriers do not collide with the film boundaries and interact with the electric field along their
whole free path l, one can write the following estimation formula for their conductivity σtr :

σtr ∼ σ0(d/R(I))
1/2 ∝ I 1/2. (4)

Here σ0 represents the conductivity of the bulk sample. At the same time, there exist flying
electrons which do collide with the boundaries of the specimen and, according to reference [12],
have conductivity of the order of σ0(d/ l). Apparently, in the range of rather strong currents,
when the inequality

(dR(I))1/2 � l (5)

holds, the conductivity of the film is determined by the group of trapped carriers. As a result,
we observe a deviation from Ohm’s law: the voltage U is proportional to the square root of
the current:

U ∝ I 1/2. (6)

For a film with thickness d = 10−3 cm, electron mean free path l = 10−1 cm, and Fermi
momentum pF = 10−19 g cm s−1, the nonlinearity becomes noticeable ((dR)1/2 ∼ l) at
values of the magnetic field H(I) of about 1 Oe. The theory developed in reference [11] is in
good qualitative agreement with experimental data (see, e.g., reference [13]).

In an external magnetic field h, collinear with the magnetic field of the current, the
plane of sign alternation for the magnetic field shifts to one of the two boundaries of the
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film (see figure 1). That, in turn, leads to an appreciable reduction in the number of trapped
particles and, therefore, their conductivity. In particular, such a situation would arise under
symmetrical irradiation of the film by a large-amplitude low-frequency electromagnetic wave.
At low frequencies, the AC magnetic field h(t) of the wave is virtually uniform across the
metal (i.e., the wave penetration depth δ is much greater than the sample thickness d). Thus
the conductivity of the metal is essentially dependent on time and, therefore, strong nonlinear
effects in the sample response to the AC electromagnetic excitation should appear. Although
it is of interest from both the theoretical and experimental points of view, this problem has not
been investigated yet.

Figure 1. The geometry of the problem. A schematic representation of the trajectories of trapped
(1), flying (2), and surface (3) electrons.

In the present paper we study theoretically the temporal dependence of the electric field
at the surface of the film, which carries a strong direct current of fixed value I satisfying
inequalities (2) and (5). It is shown that with increase of the amplitude hm of the AC magnetic
field, this dependence becomes anharmonic, turning into a series of sharp nonanalytical peaks.
The case of sufficiently high amplitudes hm > H , where the total magnetic field in the sample
is spatially alternating during some part of the wave period and has a constant sign during
the other part, is of particular interest. In such a situation, there exist additional kinks in the
temporal dependence of the electric field due to the periodic appearance and disappearance
of the group of trapped carriers. The effect of amplification of the electric signal on the film
surface is predicted as well. We find that, because of the presence of the strong direct transport
current in the sample, the absolute value of the AC electric field of the wave turns out to be
l/(dR)1/2 � 1 times greater than the corresponding value in the absence of the direct current.
We also calculate the nonlinear surface impedance of the film, which proves to be imaginary in
the main approximation in the parameter d/δ � 1, and show that it diminishes monotonically
l/(dR)1/2 � 1 times as the AC amplitude grows.
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2. Problem statement and geometry

Consider a metal film of thickness d with a direct current I flowing along it. The
sample is irradiated from both sides by a monochromatic electromagnetic wave with a
magnetic component collinear with the magnetic field of the current. The x-axis is oriented
perpendicularly to the film boundaries. The plane x = 0 corresponds to the middle of the
sample (see figure 1). The y-axis is directed along the current direction, and the z-axis is
parallel to the vector H(x, t) of the total magnetic field which is a sum of the magnetic field
of the current H(x, t) and the magnetic field of the wave h(x, t):

H(x, t) = {0, 0, H(x, t) + h(x, t)}. (7)

The film length L (the size along the y-axis) and its width D (the size along the z-axis) are
much greater than the sample thickness d. We assume diffuse scattering of the electrons on
the film boundaries. Maxwell’s equations in the assumed geometry can be written as

−∂H(x, t)
∂x

= 4π

c
j (x, t)

∂E(x, t)

∂x
= −1

c

∂H(x, t)
∂t

(8)

where j (x, t) and E(x, t) represent the y-components of the current density and the electric
field. The boundary conditions for equations (8) are

H(±d/2, t) = hm cosωt ∓H (9)

with H being the absolute value of the magnetic field on the surface of the metal film and
hm denoting the wave amplitude. According to equation (3), the field H is determined by the
direct current I . No special relation between the magnitudes H and hm is assumed.

We focus on the quasistatic situation where the wave frequency ω is much less than the
relaxation frequency ν of the charge carriers:

ω � ν. (10)

Here we suppose that the AC magnetic field in the sample is quasi-uniform and virtually does
not differ from its value on the sample surface, h(x, t) � hm cosωt . In other words, the typical
spatial scale δ(ω) of variation of the AC magnetic field is much greater than the film thickness
d. Furthermore, we assume that the curvature radius R(x, t) of the electron trajectories in the
total magnetic field H(x, t) is also much greater than d:

d � δ(ω) d � R(x, t) R(x, t) = cpF /e|H(x, t)|. (11)

3. Electron dynamics, current density, and the CVC of the film

Let us consider the electron dynamics in the nonuniform AC magnetic field H(x, t). We shall
assume the following gauge for the vector potential:

A(x, t) = {0, A(x, t), 0} A(x, t) =
∫ x

dx ′ H(x ′, t). (12)

It is convenient to choose the lower limit of integration in equation (12) depending on whether
or not there exists a plane x = x0(t) of sign alternation of the magnetic field H(x, t) at the given
moment. This plane exists during the time intervals when hm|cosωt | < H because the values
hm cosωt−H and hm cosωt+H of the total magnetic field at the film boundaries have opposite
signs (see equation (9)). In this case, one should take x0(t) as the lower limit in integral (12).
Then the vector potential A(x, t) is negative. It reaches its maximum value (which equals
zero) at the point x = x0(t). Within other time intervals, when the inequality hm|cosωt | > H

holds, the magnetic field H(x, t) is of constant sign. In such a situation, one should choose
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sgn(cosωt)d/2 (sgn(x) is the signum function) as the lower limit of the integration. In this
case, the vector potential, also being negative, vanishes at one of the boundaries of the film.

The integrals of motion of an electron in the field H(x, t) are the total energy (it is equal
to the Fermi energy) and the canonical momenta pz = mvz and py = mvy − eA(x, t)/c (m is
the electron mass). The electron trajectory in the plane perpendicular to the direction of the
magnetic field is determined by the velocities vx(x, t) and vy(x, t). For the case of a Fermi
sphere of radius pF = mv we obtain

|vx(x, t)| = (v2
⊥ − v2

y)
1/2

v⊥ = (v2 − v2
z )

1/2

vy(x, t) = (py + eA(x, t)/c)/m.

(13)

Classically admissible regions of the electron motion along the x-axis are determined by
the inequalities

−py −mv⊥ � eA(x, t)/c � −py +mv⊥. (14)

These inequalities guarantee the positivity of the radicand in equation (13) for |vx(x, t)|.
The regions of the electron motion in the phase plane (x, py) are shown schematically in

figure 2 for two cases: when there exists a plane x = x0(t) of sign alternation of the magnetic
field H(x, t) (figure 2(a)) and when such a plane is absent (figure 2(b)). For definiteness, we
have chosen the moment of time when the magnetic field of the wave is positive (cosωt > 0).
The upper border of the phase plane is described by the curve py = mv⊥ − eA(x, t)/c and
the lower one is given by py = −mv⊥ − eA(x, t)/c. The electrons are naturally divided into
three groups depending on the sign and value of the integral of motion py . Below, we give
inequalities determining the regions of their existence at an arbitrary moment of time.

(a) Flying electrons:

p−
y ≡ −mv⊥ − eA[−sgn(cosωt)d/2, t]/c � py � mv⊥ |x| � d/2. (15)

These particles collide with the both boundaries of the film. Their trajectories do not
twist significantly because d � R(x, t). Flying electrons exist at every moment of time

III

I

III

II

x
d/2-d/2 0 x0

py

x*

mv

-mv

py
_

py
+

py

III

mv

-d/2 0 d/2
x

I

III

-mv

py
_

a) b)

Figure 2. The phase space (py, x). Regions of existence of flying (I), trapped (II), and surface
(III) particles in a spatially sign-alternating (a) and a constant-sign (b) total magnetic field.
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irrespective of the presence of the plane x = x0(t) (i.e. irrespective of the relation between
hm cosωt and H ).

(b) Trapped electrons: they appear during the periods of time when hm|cosωt | < H and
the total magnetic field H(x, t) within the sample passes through zero. Their states are
bounded by the region (see figure 2(a))

−mv⊥ � py � p+
y ≡ −mv⊥ − eA[sgn(cosωt)d/2, t]/c

x∗(t) sgn(cosωt) < x sgn(cosωt) < d/2.
(16)

Here x∗(t) represents the breakpoint of the trapped electron most distant from the film
boundary. One can find it from the equation

A(x∗, t) = A[sgn(cosωt)d/2, t]. (17)

According to equation (16), this electron group occupies the region x∗(t) < x < d/2
when cosωt > 0 and the region −d/2 < x < x∗(t) if cosωt < 0. The trajectories
of trapped particles are almost flat oscillating curves due to the periodic motion of the
particles along the x-direction and the uniform motion along the y- and z-axes. The
temporal period of the oscillations with respect to the plane x = x0 equals 2T , where

T =
∫ x2(t)

x1(t)

dx

|vx(x, t)| . (18)

The breakpoints x1(t) and x2(t) (x1(t) < x0(t) < x2(t)) are the roots of the equation

eA(x1,2, t)/c = −mv⊥ − py. (19)

(c) Surface electrons: these particles collide only with one of the boundaries of the film.
In our case of diffuse scattering of the electrons on the surface, their influence on the
nonlinear conductivity of the metal is negligible [11]. Thus, we do not take them into
account hereafter.

The current density of the flying and trapped particles can be deduced by means of solving
the Boltzmann kinetic equation. One should linearize the kinetic equation with respect to the
electric field E(x, t), which can be represented as a sum

E(x, t) = E0 + E(x, t)

E(x, t) = −1

c

(
∂A(x, t)

∂t
− ∂Ā(t)

∂t

)
.

(20)

Here the first term, E0, is a potential (uniform) component and E(x, t) is a rotational (non-
uniform) field of the wave. Spatial averaging of the latter over the x-axis direction gives zero.
The value Ā(t) represents a spatially averaged magnitude of the vector potential:

Ā(t) = 1

d

∫ d/2

−d/2
A(x ′, t) dx ′. (21)

The magnetodynamic nonlinearity is accounted for in the kinetic equation by means
of terms which contain the total magnetic field H(x, t) = H(x, t) + h(x, t) entering the
Lorentz force. We calculate the current density in the main approximation with respect to the
small parameter d/δ(ω) (see equation (11)). In this approximation, as was mentioned above,
the AC magnetic field h(x, t) becomes spatially uniform and is equal to its boundary value,
h(x, t) = hm cosωt . The electric field is also independent of the x-coordinate and coincides
with the value E0(t). For the case of uniform electric and external magnetic fields, the current
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density was obtained in reference [11]. If conditions (2) and (5) hold, the following asymptotic
behaviour for the current density of the flying and trapped electrons is valid:

jf l(t) = σf l(t)E0(t)

σf l(t) = 3

8
σ0
d

l
ln
R+(t)

d
R±(t) = cpF /e|hm|cosωt | ±H |

(22)

jtr (x, t) = σtr (x, t)E0(t)

σtr (x, t) = 36π1/2

5'2(1/4)
σ0

{
e

cpF

[
A(x, t)− A(sgn(cosωt)d/2, t)

] }1/2 (23)

x∗(t) sgn(cosωt) < x sgn(cosωt) < d/2.

In the limit ω → 0, equations (22) and (23) transform into the corresponding formulae of
reference [11].

Let us substitute asymptotic expressions (22) and (23) for the current density in the first
of Maxwell’s equations (8) and introduce a dimensionless coordinate and vector potential:

ξ = 2x sgn(cosωt)/d a(ξ, t) = A(x, t)/A(sgn(cosωt)d/2, t). (24)

The equation for the quantity a(ξ, t) has the form

∂2a(ξ, t)

∂ξ 2
= u

{
r[1 − a(ξ, t)]1/2 + 1 ξ∗(t) � ξ � 1

1 −1 � ξ � ξ∗(t)
(25)

ξ∗(t) = 2x∗(t) sgn(cosωt)/d. (26)

The dimensionless coordinate ξ∗(t) delimits the region of existence of the trapped particles
and, according to equations (17) and (24), satisfies the equation, a(ξ∗, t) = 1. The parameter
r represents the ratio of the maximum magnitude of the conductivity of the trapped electrons
to the conductivity of the flying particles:

r = σtr (x0)

σf l
= 96π1/2

5'2(1/4)

l

d

[
e

cpF
|A(sgn(cosωt)d/2, t)|

]1/2

ln−1(R+/d). (27)

The dimensionless quantity, u, is related to the voltage U = E0L on the sample:

u = U

cL|A(sgn(cosωt)d/2, t)|/πσf ld2
. (28)

Equation (25) should be solved together with the boundary conditions

∂a(1, t)

∂ξ
= d

2

hm|cosωt | −H

A(sgn(cosωt)d/2, t)
∂a(−1, t)

∂ξ
= d

2

hm|cosωt | +H

A(sgn(cosωt)d/2, t)
a(1, t) = 1.

(29)

The first two of these expressions are dimensionless boundary conditions (9), and the third one
is a consequence of the normalization (24) of the vector potential.

Within the interval ξ∗(t) � ξ � 1, the solution of equation (25) is symmetrical with
respect to the point ξ0(t) = (1 + ξ∗(t))/2, where the dimensionless vector potential reaches its
minimum value (which equals zero, a(ξ0, t) = ∂a(ξ0, t)/∂ξ = 0). This solution is described
by the formula

|ξ − ξ0(t)| = (3/4ru)1/2
∫ a(ξ,t)

0
dζ [1 − (1 − ζ )3/2 + 3ζ/2r]−1/2. (30)

One cannot obtain the field distribution and the current density within the region of existence
of the trapped electrons in an explicit form. However, by means of equation (30), it is possible
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to calculate the average magnitude of the conductivity of the trapped carriers (23) within the
interval (16)

σ̄tr

σf l
= r

∫ 1

0
dζ (1 − ζ )1/2[1 − (1 − ζ )3/2 + 3ζ/2r]−1/2

×
(∫ 1

0
dζ [1 − (1 − ζ )3/2 + 3ζ/2r]−1/2

)−1

. (31)

The bar above σtr denotes spatial averaging. In the remaining region of the sample (−1 �
ξ � ξ∗(t)), there exist only flying electrons, and the solution of equation (25) is given by the
following formula:

a(ξ, t) = 1 − (2u)1/2(1 + 2r/3)1/2(ξ − ξ∗(t)) + u(ξ − ξ∗(t))2/2. (32)

Expressions (30) and (32) and their derivatives are sewn together at the point ξ = ξ∗(t). The
solution given by equations (30) and (32) contains three parameters, ξ0, u, and r , which should
be found from boundary conditions (29). It is important that the value A(sgn(cosωt)d/2, t)
of the vector potential appearing in equation (29) is not an independent parameter due to its
relation to r via formula (27).

Adding the first two boundary conditions in equation (29) term by term and using equ-
ations (30) and (32), and (28), we find the following expression for the drift of the plane
x = x0:

ξ0 = 2x0 sgn(cosωt)/d = Lhm|cosωt |
2πUσf ld

hm|cosωt | � H. (33)

In order to determine the value of u (i.e. the voltage U ), let us integrate the left- and right-
hand sides of equation (25) from −1 to 1 taking into account the boundary conditions for the
derivative ∂a(ξ, t)/∂ξ in (29). The integral of the function [1 − a(ξ, t)]1/2 appearing on the
right-hand side can be reduced to the product 2(1 − ξ0)σ̄tr/rσf l with the use of the condition
a(1, t) = 1. Taking this into consideration as well as formulae (28) and (33) for the quantities
u and ξ0, we have after some simple transformations

U = cL

2πdσf l(t)

H(I) + (σ̄tr/σf l)hm|cosωt |
1 + σ̄tr/σf l

hm|cosωt | � H. (34)

According to equation (31), the ratio of conductivities, σ̄tr/σf l , depends on the parameter r .
Using expression (28) for u, relation (27) between A(sgn(cosωt)d/2, t) and r , and solution
(30), we obtain from the first boundary condition in equation (29) the algebraic equation for r:

r2(1 + 2r/3) =
(
H − hm|cosωt |

H̃

)2
Ũ

U ln3(R+/d)
hm|cosωt | � H. (35)

Here we have introduced the following notation:

H̃ = 25'4(5/4)

9π

cpFd

el2
Ũ = 4clLH̃

3πσ0d2
. (36)

The parameters H̃ and Ũ represent those magnitudes of the magnetic field and voltage for
which the typical length (Rd)1/2 of the electron trajectory arc is of the order of the mean free
path l.

Expressions (31), (34), and (35) define, in an implicit form, the dependence of the voltage
U on the current I for the case where hm|cosωt | � H . Under these conditions there exists
a plane of alternation of sign of the total magnetic field within the sample. If the opposite
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inequality, hm|cosωt | � H , is valid, the trapped electrons are absent (r = 0, ξ∗ = 1, σtr = 0)
and the CVC is described by the formula

U = cLH(I)

2πdσf l(t)
hm|cosωt | � H. (37)

As one can see from formula (34), the voltage on the sample displays nonanalytical
behaviour versus time: the dependence U(t) has kinks at the moments when the AC magnetic
field hm cosωt vanishes. This is an essentially nonlinear effect caused by the contribution of a
large group of trapped electrons to the electric current. The temporal dependence of the voltage
(34) for the case where the wave amplitude is not too large (hm < H ) and there exist trapped
carriers throughout the whole period 2π/ω is shown in figure 3(a); figure 3(b) represents the
dependenceU(t) for the opposite case, hm > H , in which during some part of the wave period
(for hm|cosωt | � H ), the conductivity is caused by the flying particles only.

Figure 3. The time dependence of the voltage U at relatively small ((a) hm < H ) and large
((b) hm > H ) AC amplitudes.

4. Nonanalytical temporal dependence of the electric field

The knowledge of the vector potential A(x, t) allows one to calculate the rotational electric
field E(x, t) as a correction to E0(t) (see equation (20)). We are interested in the difference
,E(t) = E(d/2, t) − E(−d/2, t). This value is proportional to the rate of alteration of the
magnetic flux through the cross-sectional plane, which is perpendicular to the direction of the
vector of the total field H(x, t), and thus can be measured in experiment.

From equations (30) and (32), it follows that the difference a(1, t)−a(−1, t) is connected
with the derivatives ∂a(1, t)/∂ξ and ∂a(−1, t)/∂ξ by the relations

a(1, t)− a(−1, t) = −ξ0(t)

[
∂a(1, t)

∂ξ
− ∂a(−1, t)

∂ξ

]
hm|cosωt | � H (38)
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a(1, t)− a(−1, t) = ∂a(1, t)

∂ξ
+
∂a(−1, t)

∂ξ
hm|cosωt | � H. (39)

Let us now turn to the dimensional variables in equations (38) and (39) using boundary
conditions (29) and relation (27) between the values of A(sgn(cosωt)d/2, t) and r . After
that one can obtain the following expression for the magnitudes of the vector potential at the
film boundaries:

A(sgn(cosωt)d/2, t) = −H̃d ln2(R+/d)r
2/4

A(−sgn(cosωt)d/2, t) = −H̃d ln2(R+/d)r
2/4 − 2H |x0(t)|

(40)

for

hm|cosωt | � H

and

A(sgn(cosωt)d/2, t) = 0

A(−sgn(cosωt)d/2, t) = −dhm|cosωt | (41)

for

hm|cosωt | � H.

Formulae (40) and (41) are sewn together the time moment when hm|cosωt | = H . The
parameter r in equation (27) vanishes, and the plane x = x0(t) coincides with one of the
boundaries of the sample, |x0(t)| = d/2. From relations (40) and (20), by means of formula
(33) for ξ0(t), we derive the expression for the difference ,E(t) of magnitudes of the electric
field at the film boundaries:

,E(t) = −2H

c

∂x0(t)

∂t
= −H(I)Lhm

2π

∂

∂t

[
cosωt

σf l(t)U(t)

]
hm|cosωt | � H. (42)

If the inequality hm � H holds, the previous relation is valid throughout the whole period of
the wave. However, in the case where hm > H , there exists a time interval when the plane
x = x0(t) of alternation of sign of the total magnetic field is absent. If such a situation arises,
one should use formula (41) in order to obtain the dependence ,E(t). Finally we come to the
result below:

,E(t) = ,EL sinωt ,EL = dhmω/c hm|cosωt | � H. (43)

From this, it follows that the difference,E(t) is a harmonic function of time, i.e. the response
of the film to the external electromagnetic excitation turns out to be linear if there are no
trapped electrons. It is obvious that formula (43) also describes the dependence ,E(t) at
small magnitudes of the current I (H � H̃ ), when the contribution of trapped particles to
the conductivity is negligible throughout the whole period of the wave. Then the value ,EL
represents the amplitude of the linear response.

The dependence,E(t) is shown in figure 4 for a wide range of the AC amplitudes hm and
for large magnitudes of the DC magnetic fieldH of the current I , when the inequalityH � H̃

(or inequality (5)) is valid. It is obvious that the ratio of the amplitude ,Em to its linear value
,EL does not depend on hm. From relations (42), (34), and (35) at cosωt = 0, we find the
expression for ,Em:

,Em
,EL

= 0.83

(
H

H̃

)1/2 1

ln(R/d)

(
H

H̃

)1/2

∼ σtr

σf l

∣∣∣∣∣
cosωt=0

∼ l

(Rd)1/2
� 1. (44)

The ratio ,Em/,EL is determined by the magnitude of the DC magnetic field H and can be
much greater than unity. In other words, there exists an effect of amplification of the electric
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Figure 4. The dependence ,E(t) for H = 300H̃ and various amplitudes of the AC signal:
hm = 1H̃ (1), hm = 200H̃ (2), hm = 500H̃ (3). The ratio of the mean free path l to the film
thickness d equals 30.

signal at the film surface. For small AC amplitudes (curve 1, hm = H/300), the signal turns out
to be quasi-harmonic. However, with the increase of hm the dependence ,E(t) shows kinks.
Curve 2 has kinks at the points of extrema, i.e. at the time moments when the AC magnetic field
hm cosωt vanishes. These singularities are related to the nonanalytical behaviour of the CVC
of the film (see equation (34) and figure 3). Curve 3 corresponds to the case where hm = 5H/3,
in which the trapped electrons are absent during a part of the wave period. In such a situation,
the dependence ,E(t) contains additional kinks arising at the moments of appearance and
disappearance of the plane x = x0(t) of sign alternation of the total magnetic field. They are
located symmetrically with respect to the points of extrema as shown by curve 3. By means of
formulae (42), (43), (34), and (35), we find the right and left derivatives of the function ,E(t)
at the point t0 = (1/ω) arccos(H/hm) of the first kink:

∂

∂t

,E(t)
,EL

∣∣∣∣∣
t=t0−0

= ωH

hm
(45)

∂

∂t

,E(t)
,EL

∣∣∣∣∣
t=t0+0

= ωH

hm

[
1 − π

2 ln(R+/d)

(
H

H̃

)1/2(
h2
m

H 2
− 1

)]
. (46)

According to equation (46), the right derivative is negative and has large absolute value even
at [(hm/H)2 − 1] � 1.

5. Surface impedance of the film

Let us analyse the dependence of the surface impedance at the film boundary x = d/2 on
the AC amplitude hm under conditions of interaction of the transport current and the electro-
magnetic wave. The impedance is proportional to the ratio of the first Fourier harmonics of
the electric (Eω) and magnetic (hω) fields at the surface of the sample:

Z = 4π

c

Eω
hω

= 8π

c

Eω
hm

(47)
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where

Eω = − ω

2πc

∫ 2π/ω

0

(
∂A(d/2, t)

∂t
− ∂Ā

∂t

)
eiωt dt = iω2

2πc

∫ 2π/ω

0

(
A(d/2, t)− Ā(t)

)
eiωt dt.

(48)

Taking into account equations (33) and (40), we deduce the boundary value of the vector
potential for the periods of time given by the inequality hm|cosωt | � H :

A(d/2, t) =
{

−H̃d ln2(R+/d)r
2/4 cosωt > 0

−H̃ ln2(R+/d)r
2/4 + cHLhm cosωt/2πU(t)σf l(t) cosωt < 0.

(49)

In the case where hm|cosωt | � H , the following expression is valid (see equation (41)):

A(d/2, t) =
{

0 cosωt > 0

dhm cosωt cosωt < 0.
(50)

Let us calculate the mean value of the vector potential Ā(t) for hm|cosωt | � H , when there
exists a plane of alternation of sign of the field. According to equations (30) and (32), we have

Ā(t)

A(sgn(cosωt)d/2, t)
= 1

2

∫ 1

−1
a(ξ, t) dξ

= ξ0(t) + (2u(t))1/2(1 + r(t)/3)1/2ξ 2
0 (t)

+ (2/3)u(t)ξ 3
0 +

(
3

4r(t)u(t)

)1/2 ∫ 1

0

ζ dζ√
1 − (1 − ζ )3/2 + 3ζ/2r(t)

. (51)

In the case where hm|cosωt | � H , one should use solution (32) with r = 0, ξ∗ = 1 in order
to find Ā(t). Proceeding to dimensional variables and using equations (28) and (37), one can
easily obtain

Ā(t) = −dhm|cosωt |
2

− 1

6
Hd. (52)

We draw the reader’s attention to the fact that the mean value of the vector potential depends
on time only via the term |cosωt |, Ā(t) = Ā(|cosωt |). This follows from formulae (35), (28),
and (33) for the values r , u, and ξ0 as well as from relation (27) betweenA(sgn(cosωt)d/2, t)
and r .

We start the calculation of the surface impedance with the case of relatively small
amplitudes hm < H , when the group of trapped electrons exists throughout the whole period
of the wave. Let us substitute expressions (49) and (51) into equation (47). Then, the integrals
containing Ā(t) and −H̃d ln2(R+/d)r

2/4 vanish since these functions depend on |cosωt | only.
By means of formula (34) for the voltage U , the remaining integral can be transformed into
the form

Z = 8idω

c2

∫ π/2

0

1 + σ̄tr (τ )/σf l(τ )

1 + (σ̄tr (τ )/σf l(τ ))(hm/H) cos τ
cos2 τ dτ hm � H. (53)

For the case of large amplitudes hm > H , one should calculate the impedance using formulae
(49), (50), (51), and (52). It represents a sum of two terms:

Z = 8idω

c2

[∫ π/2

π/2−arcsinH/hm

1 + σ̄tr (τ )/σf l
1 + (σ̄tr (τ )/σf l(τ ))(hm/H) cos τ

cos2 τ dτ

+
∫ π/2−arcsinH/hm

0
cos2 τ dτ

]
at hm > H. (54)
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The first term corresponds to the temporal interval when the trapped electrons exist in the
sample, and the second one is related to the interval when these particles are absent.

Let us calculate the asymptotics of the surface impedance for the case of rather large
amplitudes hm � H . For this purpose, we rewrite integral (54) in another form:

Z = 8idω

c2

[∫ π/2

0
cos2 τ dτ

+
∫ π/2

π/2−arcsinH/hm

(
1 + σ̄tr (τ )/σf l

1 + (σ̄tr (τ )/σf l(τ ))(hm/H) cos τ
− 1

)
cos2 τ dτ

]
. (55)

In the second integral, we substitute in the variable of integration (hm cos τ)/H = η and
expand the integrand in a power series in the ratio H/hm. Then one finds

Z

ZL
= 1 +

4

π
(H/hm)

3
∫ 1

0

[
1 + σ̄tr (π/2)/σf l(π/2)

1 + σ̄tr (π/2)/σf l(π/2)η
− 1

]
η2 dη (56)

where

ZL = i
2π

c2
ωd (57)

is the same as the value of the impedance in the absence of the direct transport current. The
conductivities σ̄tr (π/2), and σf l(π/2) are taken at the moment of time when the AC magnetic
field hm cosωt becomes zero. Therefore, their ratio is much greater than unity due to inequality
(44). Taking into account condition (44), we calculate integral (56) and obtain the following
asymptotic behaviour for the impedance:

Z

ZL
= 1 +

2

3π

(
H

hm

)3

H � hm. (58)

Now we consider the case of the extremely small amplitudes described by the inequality
hm � Hσf l(π/2)/σtr (π/2) ∼ (HH̃ )1/2. The integrand in equation (53) can be presented as
a power series in hm/(HH̃)1/2. As a result the asymptotic behaviour takes the form

Z

ZL
= 4

π

σ̄tr (π/2)

σf l(π/2)

∫ π/2

0

[
1 − σtr (π/2)

σf l(π/2)

hm

H
cos τ

]
cos2 τ dτ

= σtr (π/2)

σf l(π/2)

(
1 − 8

3π

σtr (π/2)

σf l(π/2)

hm

H

)
at hm � (HH̃ )1/2. (59)

We notice that impedance (59) is σtr (π/2)σf l(π/2) � 1 times greater than that in the absence
of the direct current. This is a direct consequence of the effect of the amplification of the electric
signal at the film boundary which was treated in the previous section (see equation (44)). The
presence of a strong direct current in the sample also causes linear behaviour of the impedance
in the region of small amplitudes. As shown in figure 5, the impedance decreases monotonically
within the region between asymptotics (59) and (58).

6. Conclusions

The nonlinear interaction of electromagnetic waves with a strong direct transport current in a
thin metal film leads to unusual effects due to the specific—typical only for metals—magneto-
dynamic nonlinearity mechanism. These effects have been studied by analysing the nonlinear
response of the film, which carries the direct current, irradiated bilaterally by an electromagnetic
wave. The interaction of the wave with the current results in the nonanalytical behaviour of the
AC electric field versus time on the sample surface which is characterized by the appearance
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Figure 5. The surface impedance Z (in units of the impedance ZL in the absence of the direct
current) versus the dimensionless amplitude hm/H̃ of the AC signal at H = 500H̃ .

of sharp kinks. The increase of the current is accompanied by a rise of the amplitude of the
electric field oscillations at the surface of the sample. This, in turn, causes the growth of the
surface impedance of the conductor.

The results obtained in this paper are valid under certain applicability conditions. Firstly,
the AC electric field ,E(x, t) must be small compared to the potential electric field E0(t). It
follows from formulae (20), (40), and (41) that the quantities E and,Em, equation (44), are of
the same order. Therefore, to ascertain the restrictions imposed by the condition E � E0(t),
we can use the quantity ,Em in the latter condition. The quantity ,Em should be much less
than the minimum value of the function E0(t), i.e., the magnitude of potential field (34) for
cosωt = 0. The desired inequality reads

d2 hml

HR
� δ2

n(ω) δ2
n(ω) = c2

4πσ0ω
(60)

where δn(ω) stands for the characteristic penetration depth of the AC field into a metal under
the condition of a normal skin effect. Secondly, the nonuniform component of the magnetic
field inside the film must necessarily be much less than hm. This stems from the assumption
that the AC magnetic field h(x, t) should be quasi-uniform (h(x, t) � hm cosωt) over the film
thickness. The maximum value of the nonuniform correction can be estimated from the first
of Maxwell’s equations (8) as (4πσtr ,Em d/c) ∼ hm(d/δ)

2, where the effective penetration
depth δ(ω) is equal to δn(ω)(R/l)1/2. As a result, we arrive at the following requirement which
ensures that the quasi-uniform approximation is applicable:

d2 l

R
� δ2

n(ω). (61)

Comparing the restrictions imposed by inequalities (60) and (61), we see that condition (60)
is stricter at large AC amplitudes, hm > H , while for small values of hm one should use
inequality (61).

We expect the nonlinear effects discussed here to be observed under the same conditions
as described in [13]. Those measurements were carried out on W and Cd specimens at helium
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temperatures in the presence of a DC magnetic field parallel to the sample surface. We
suggest that such an experimental scheme should be modified by applying a low-frequency
AC magnetic field instead. Let us estimate the relevant frequencies at which the predicted
phenomena may be revealed. For a sample with a thickness of d = 10−3 cm, width
D = 0.5 cm, electron free path l = 10−1 cm, concentration of electrons N = 1023 cm−3,
Fermi momentum pF = 10−19 g cm s−1, and for values of the current I ∼ 10 A and magnetic
fieldshm ∼ H ∼ 10 Oe, the phenomena revealed in this paper should be distinctly pronounced.
From equations (60) and (61) it follows that ω < 105 s−1 for this particular case. We give
special attention to the fact that the wave amplitudes need not be large in order to observe the
effects discussed. Values of the amplitude of the order of 10 Oe are quite accessible at low
frequencies.

The unusual manifestation of the specific magnetodynamic mechanism of nonlinearity
discussed in the present paper calls for further investigation. In the above analysis we have
restricted ourselves to the case of an isotropic electron spectrum. It would be interesting to
investigate the influence of the anisotropy of the Fermi surface on the results obtained in this
paper. Besides this, we have used the framework of the quasiclassical theory. However, in
sufficiently thin films the transverse motion of trapped electrons should be quantized. Since
the contribution of these electrons to the nonlinear conductivity of the film is dominant, the
size quantization can give rise to new effects in the nonlinear response. Finally, a question
arises concerning the interaction of an AC signal with a direct current at high frequencies when
inequalities (60) and (61) are not satisfied and the distribution of the AC magnetic field over
the sample thickness becomes strongly inhomogeneous.
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